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ABSTRACT 

A key characteristic of intelligent archives of the future is adaptability to changing science 
and application demands and capabilities.  One way to incorporate adaptability within a 
modest cost envelop is to provide “virtual” data products, that is, data that are produced 
from the raw data on-demand, rather than routinely producing and storing data.  The 
virtual data product strategy has the benefit of decreasing storage requirements, making 
data migration to new technology easier and less expensive, providing users with more 
precise selection of spatio-temporal areas or parameters and more options in algorithm 
selection.  Aside from the basic mechanics of implementing on-demand processing, a 
number of issues arise with product virtualization, though they all have potential solution 
paths.  The computing power needed for such processing is hoped to be achieved 
through revolutionary computing developments.  Difficulties in quality assurance of on-
demand products could be addressed by a process-and-discard strategy with stored 
statistics, or by processing low-resolution versions of the data a priori.  Likewise quality 
control of the raw input data would benefit from either of these strategies, or from a 
robust quality check of the input data.  The data migration problem is transmuted to a 
software porting issue as new computer architectures, operating systems or compilers are 
introduced.  Checking cross-platform portability during algorithm acceptance can mitigate 
this issue, coupled with the quality assurance strategies mentioned above.  In the end, the 
desirability of replacing stored routinely processed products with virtual products is likely 
to be driven by the relative advancement of computing versus storage technologies.  
Should the former advance beyond the latter, virtual products will become both more 
feasible and more desirable. 
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INTRODUCTION 

An ever-increasing amount of data is being returned from larger numbers of spacecraft 
with more sensors.  This increase is beginning to tax the ability of data archives to keep 
up with the data processing, storage and distribution requirements.  The problem is 
expected to increase as hyperspectral instruments become more prevalent, as it will 
become less feasible to produce and store, or indeed even define, all potentially useful 
products on a fixed schedule.  The introduction of adaptive intelligent data systems may 
add to the challenge, as they request new measurements or data in response to features or 
results just discovered in previous steps.  An effort at NASA is underway to define the 
attributes and potential architectural concepts of intelligent archives in the future that 
could meet these challenges1.   
 
A critical component of such intelligent archives is clearly the ability to adapt to evolving 
scientific capabilities and demands; yet remain with a modest cost envelope.  However, 
the strategy of routinely processing and storing products for later retrieval places severe 
constraints on a data management system:  algorithm changes introduce inconsistencies in 
the time series; archive capacity planning must be years in advance to accommodate the 
space and power needs of large silos; data migrations to new technologies are costly and 
time-consuming, yet indispensable. 
 
One possible approach to these challenges in an intelligent archive is the creation of 
“virtual” data products, i.e., products which are not stored and then recovered from 
archive, but rather generated “on-demand” when requested.  The concept of on-demand 
processing of remote sensing data has a long history.  For example, Landsat products are 
typically processed on demand, as are those from the Earth Observing System’s ASTER 
instrument.  However, this type of on-demand processing is typically driven by 
requirements to vary run-time parameters at the time of processing.  On-demand 
processing was also suggested as an alternative architecture for EOSDIS2.  Ultimately, on-
demand processing was not expanded beyond ASTER and Landsat, due to concerns about 
algorithm interdependence and product standardization3.  On the other hand, only a few 
attempts have been made to substitute on-demand processing for storage of defined 
products, or in other words, storing “virtual” data products.  One example is provided by 
the Grid Physics Network (GriPhyN) project, which has developed a prototype of a virtual 
data product system for the Laser Interferometer Gravitational-wave Observatory (LIGO)4.  
So far, their efforts have focused on constructing the infrastructure for product 
virtualization and materialization using standard Grid protocols.  On the other hand, the 
University of Alabama—Huntsville has been working on the application of an online data 
mining system to provide virtual products5.  These projects are developing the basic 
mechanics of virtual products, such as how to define and implement recipes for 
production or how to provide metadata for the virtual products.  However, a number of 
issues beyond these basic mechanics remain if product storage is to be replaced by 
virtualization at any useful scale.  Both the drivers for virtualization and the challenges are 
discussed in this white paper. 
 
It is first important to understand how routine processing of remote sensing data for 
archives currently occurs.  Firstly, it is useful to define different levels of data processing 
to describe the amount of processing accomplished to produce a data product.  For the 
purposes of this paper, the definitions shown in Table 1 (based on the EOS data level 
definitions) are used. 
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Table 1 Data Level Definitions 

EOSDIS Archive*  Processing 
Level 

Definition 

Million 
Granules 

Volume 
in TB 

Level 0 Instrument data at original resolution, time order-
restored, with duplicate packets removed 

1.6 412 

Level 1A Level 0 data that are reformatted with calibration 
data and other ancillary data included.  Geolocation 
information for each spatial element (e.g., pixel) of 
the reformatted sensor-coordinate data is stored 
separately. 

3.1 444 

Level 1B Level 1A data to which the radiometric calibration 
algorithms have been applied to produce radiances, 
irradiances, or brightness temperature. 

9.3 663 

Level 2 Geophysical parameter data retrieved from a single 
sensor’s Level 1B data by application of geophysical 
parameter algorithms.  The MODIS science team has 
an additional level, 2G, which contains pixel to grid 
mappings. 

14.6 729 

Level 3 Earth-gridded geophysical parameters that have been 
averaged, gridded, or otherwise rectified or 
composited in space and/or time. 

5.5 175 

Level 4 Model output or results of analyses from lower-level 
data; such as variables derived from data collected 
by multiple sensors 

0.3 3 

  *Data archived from February, 2000 to July, 2003. 
 
Although on-demand processing can be applied in principle to any level above level 0, 
the difficulty increases as the processing level increases.  This is due to the increasing 
variety and volume of input data that must be staged, as well as the cumulative effect of 
the processing that must be done.  Whereas Level 1 and Level 2 data, in swath or scene 
coordinates, typically need only the same scene for their upstream products, plus perhaps 
bounding scenes, Level 3 and Level 4 data typically require at least a full day’s worth of 
data, and often much more depending on the algorithm.  As a result, the cost/benefit 
equation for these higher levels makes them less attractive for virtualization; thus, we will 
focus on Level 1 and Level 2 data in our discussion.  This is but a minor limitation, as the 
bulk of EOS archives, both in volume and number of granules, consists of Level 1 and 
Level 2 data (Table 1).  The purpose of this paper is to examine the basic needs for 
product virtualization, develop a general concept of operations for its use, lay out a 
conceptual architecture and discuss some of the issues concerning its implementation. 
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THE BENEFITS OF PRODUCT VIRTUALIZATION 

The section below discusses the drivers (or benefits) of product virtualization.  The first 
two drivers, handling large amounts of data and mitigating migration difficulty, benefit 
primarily the cost containment of archive construction and management.  However, the 
rest of the benefits are scientific in nature, relating to increasing the adaptability of the 
archive from the perspectives of both science algorithms and science users. 

SUPPORT ARCHIVAL OF INCREASING AMOUNTS OF DATA 

Increases in sensors, channels, spatial and temporal resolution, and derived parameters 
are all combining to drive archival requirements considerably upward.  At some point, it 
becomes impractical, if not impossible (computationally and financially), to archive all 
derived parameters in addition to the raw Level 0 data.  Furthermore, not all raw data 
need be processed to higher levels.  Although most sensors now collect data globally, 
much of it may be of little scientific or practical interest.  However, the higher-level data 
must be available on demand when needed.  Virtualizing higher level data would allow 
only the data of interest, i.e., requested by some person or model, to be computed and 
distributed. 

MITIGATE THE DIFFICULTY AND COSTS OF DATA MIGRATION 

Data archives employing tape technology must usually migrate data every three to five 
years in order to keep the data in an archive that is still supported by the manufacturer.  
As data volume grows, this migration effort becomes increasingly expensive and time 
consuming6.  One possible way of alleviating this would be to virtualize the Level 1 and 
Level 2 products and migrate only the irreproducible Level 0 and the relatively low-
volume Level 3 and Level 4 products.  Of course, this would transform the data migration 
problem from one of sheer volume to the problem of migrating data production 
algorithms to new platforms and operating system versions, a challenge which is 
addressed in a later section.   

SUPPORT ADVANCES IN ALGORITHMS 

The development of algorithms to derive geophysical parameters is a continuously 
evolving process.  Rather than re-create derived data sets when new or updated 
algorithms are developed, virtual products should enable the algorithms, which are 
archived along with the Level 0 data, to be updated.  Users of the virtual product archive 
can then access it to obtain the latest (and hopefully best) values for the derived Level 1 
or Level 2 data when needed. 

AVOID MULTIPLE VERSIONS OF DATA SETS 

In Level 2 processing, a number of different algorithms for a given geophysical parameter 
are often current within the scientific community or are used to preserve continuity with 
previous instruments or algorithms.  For example, Chlorophyll-a from the MODIS 
instrument is available using three (3) different algorithms7.  Storing only the collected 
data and then deriving the desired parameters would ensure that users could have 
consistent (and latest) versions of the data.  In cases where algorithm quality is debated, 
users could have the option to select which algorithm will drive the data reduction. 

SIMPLIFICATION OF DATA COLLECTION FOR THE USER 

With the large amounts of data and the potential for updated algorithms or multiple 
versions, data discovery and selection must be made simpler for users, especially for Level 
2 products.  Currently, when making requests for the various products available, users 
must often be knowledgeable about potential differences between various incarnations of 
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data sets.  As the number of users from outside the remote sensing community increase, 
the process of choosing and obtaining these data must be made simpler. 

A PRIORI SUBSETTING 

In today’s production concept, data “granules” of a fixed size, temporal coverage and 
spatial coverage are produced, often resulting in large data files with many parameters 
covering large geographic areas.  Many users, however, want small segments of the data 
for just a few parameters.  The result has been a significant effort to subset the data after 
the fact.  An important benefit of virtualized production would be the ability to generate 
the desired parameters only over the user’s study area. 
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CHALLENGES 

Product virtualization faces several challenges in its development and operation.  While 
many of these challenges might seem difficult or even insurmountable, in fact many of 
them can be addressed by the very intelligence in the Intelligent Archive that is driving 
the requirement for virtualization.  The following sections discuss some of the more 
significant issues and potential areas of study to resolve them. 

PROCESSING POWER 

Perhaps the most obvious challenge to product virtualization is the potential need for 
processing power.  We can expect the available computing power to continue to increase 
in silicon-based processors with Moore’s Law for at least several years.  Eventually, 
revolutionary computing technologies (e.g. quantum computing) may pick up the 
increase, albeit with a potential stagnant period in between.  Another area that could 
enable the power for product virtualization is the Grid computing effort, which can use 
distributed computing power more flexibly, thus making more available for use.  This 
could even be carried to the extreme of using the user’s computer to produce the 
products by shipping the raw data, plus a portable version of the processing algorithm.  
The algorithm would then be automatically (or with one click) run on the user’s 
computer, much the way self-extracting archives work today. 

PROCESSING QUALITY CHECKS 

Perhaps the greatest concern on the part of the end users is the ability to confirm the 
proper creation of the Level 1 or Level 2 data.  This becomes a very real concern as 
computing improvements drive the migration of the intelligent archive to new hardware 
and/or software systems.  One approach to this would be to compare quality checks 
created on the original system with those created on the new system in order to ensure a 
successful migration.  Processing quality checks can also be employed by users to ensure 
the data have been properly processed; quality checks delivered with the returned data 
can be compared to those stored in the archive.   
 
However, the kind of standard checksums (e.g. Cyclic Redundancy Checksums) currently 
applied by archives to ensure file integrity would not be adequate for ensuring 
information integrity of virtual products.  This is because any two instantiations of the 
same virtual “granule” may contain production-related metadata (e.g. production time) 
which are unique to that instance, numeric roundoff differences, or byte alignment 
differences due to architecture.  Thus, a more sophisticated means for assuring the quality 
of the underlying scientific values is required.  Two potential methods could be applied to 
provide these checks. 
 
STATISTICAL QUALITY CHECK 

The first method would entail processing all Level 1 and Level 2 data upon receipt of the 
raw data.  These data would be kept in a short-term archive for operational or quasi-
operational use.  Statistics (e.g., mean, standard deviation, etc.) that describe the data over 
defined areas of sensor space (e.g., over every few scan lines) would then be calculated.  
These descriptive statistics would then be stored as meta-data for long term archival in the 
intelligent archive along with the Level 0 data and the algorithms used to generate the 
higher-level products.  When archived Level 0 data, quality checks, and algorithms are 
migrated to a new system (or when users request Level 1 or Level 2 data), the quality 
checks would be recalculated and compared to the original quality checks in the 
metadata. 
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One advantage of this method is that the quality values generated would (if wisely 
chosen) be a very small fraction of the space required for the overall archive.  
Additionally, Level 1 and Level 2 data would be immediately available for operational or 
quasi-operational users on a short-term archive.  On the down side, this method requires 
processing of all data to Level 1 and 2 immediately, regardless of the need for these data 
in the short term.  Furthermore, the acceptance of new processing algorithms would 
require a massive processing campaign to process all Level 1 and Level 2 data in order to 
generate new quality checks.  However, it is likely that such processing would be 
required anyway in order to generate the Level 3 and Level 4 products.  In this concept, 
the Level 3 and Level 4 products are produced and stored; the Level 1 and Level 2 
products are discarded after saving statistical information for future quality checks in on-
demand processing. 
 

THUMBNAIL QUALITY CHECK 

The second method would involve processing Level 1 and Level 2 data on some subset of 
the Level 0 data (e.g., every 100th pixel).  (On the other hand, for some data products, 
alternative methods of generating low-resolution products might be needed.)  Such 
“thumbnail” views would then be made available on a short-term archive as well as 
archived in the intelligent archive along with the Level 0 data and the algorithms used.  
When archived Level 0 data and algorithms are migrated to a new system (or when users 
request Level 1 or Level 2 data), the thumbnail values would be compared to the 
corresponding values in the full density data.   
 
There are several advantages to this method.  First, the thumbnail “images” could be 
hosted on a random access system for browsing; when the user selects data, the 
intelligent archive would “reach” into the long-term storage (i.e., a tape silo) for the 
archived Level 0 data and metadata.  Second, the generation of these checks does not 
require processing of all Level 1 and Level 2 data.  Finally, acceptance of new algorithms 
into the intelligent archive would likewise not require processing of all data.  On the 
down side, the thumbnails might constitute a larger fraction of the overall archive than the 
statistical approach, depending on the resolution of the thumbnails. 

QUALITY CONTROL OF �RAW� DATA 

One of the lessons learned in current processing environments is that quality problems in 
the raw data are sometimes not detected until certain forms of higher level processing 
have been attempted.  Thus, all virtual product algorithms would require a capability to 
detect quality problems in the input data.  Alternatively, a robust quality control algorithm 
could be applied to the Level 0 data on arrival, or provided as an on-the-fly capability 
when retrieving for virtual products.  However, there is also a risk that quality problems in 
the raw data would be discovered too late to do anything about it, such as reprocess 
frame data to level 0 or reacquire raw data from backup.  This favors some detailed 
examination of the Level 0 data immediately, either via the robust QC method, or the 
process-and-discard method discussed in the previous subsection.   

MIGRATION OF VIRTUAL DATA PRODUCTS 

Any long-term archive must accommodate advancements in hardware and software 
technology over time, particularly in the area of operating system and compiler upgrades.  
Migrating large data sets to new hardware/software technologies has always been an issue 
with all large data sets.  However, the product virtualization in an intelligent archive 
presents quite a different porting problem, that of migrating the algorithms to new 
machines, operating systems and compilers.  This places additional burden on the science 
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data processing algorithms to be written as “generically” as possible, using a widely 
accepted language.  An approach to ensuring future portability is to test the algorithm 
code on multiple platforms at acceptance time.  If a program demonstrates portability 
across multiple computer platforms, it is more likely to be portable to new operating 
system versions or compilers in the future. 
 
Even so, successful porting of the algorithms to a new system cannot be assumed.  As a 
result, each migration must be accompanied by a significant processing campaign to verify 
that the algorithm produces the same results as before, using quality checks of the type 
described in an earlier subsection. 

DERIVED DATA LATENCY 

Unless sufficient computing resources are available, data delivery time could increase 
drastically over what is required to merely retrieve the needed data that has been derived 
a priori.  However, note that the processing time latency problem may be 
counterbalanced by an increased ability to stage, or even keep online, the Level 0 data 
needed for the processing.  Furthermore, the latency problem can be mitigated for real-
time or quasi-operational use of the data using the short-term archive discussed briefly 
above, which would provide ready access to these data.  Once these data are no longer 
available on the short-term archive, users might have to be granted varying levels of 
priority for assignment of computational resources.   
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CONCEPT OF OPERATIONS 

To gain better understanding on how virtual products would work in an intelligent 
archive, a user scenario is presented below.  The “user” could be, and for the case of the 
intelligent archive often is, an application (such as an assimilation model) rather than a 
person. 
 
 
In this scenario, the intelligent archive is tasked by a user to provide derived parameters 
from the “best” algorithm.  In this case, “best” really means most appropriate for the user’s 
circumstances.  This judgment would be made based on criteria such as: 

• desired latency, which may prevent incorporation of some ancillary data 
• desired science quality, which may not support execution until a later time or date 

due to availability of ancillary or sufficient data 
• science-based vs. machine-learning based algorithms. 

Although the definition of “best” will be purposely left vague, we can make the 
assumption that the intelligent archive system has some a priori rules that define how the 
best quality derived data will be produced on basis of available data, location and/or 
geography of the location of interest, seasonal considerations, and the accepted “best” 
algorithm for these conditions. 
1. The user submits a request for a data product over a specific geographic region and 

time period.  The size of the region need not be constrained to some minimum pre-
defined “granule” size (unless required for processing quality checks).  The user may 
specify latency or quality criteria for selecting the “best” available algorithm to 
generate the requested data.  

2. The intelligent archive determines which of the “approved” algorithms provides the 
best retrieval on the basis of available data, location/geography, time/date/season, 
environmental conditions, etc.  A variation of this might be an ensemble method 
where parameters are derived based on several algorithms and mean, confidence, and 
range of uncertainty are calculated and provided.   

3. Before retrieving any data from the long-term archive, the intelligent archive would 
check a short-term storage area for data matching the user’s needs.  If available, the 
user will be sent notification that the data request is complete. 

4. If the request data are not available in the short-term storage, the Level 0 data and 
associated metadata are retrieved, processed, and quality checked.  The processed 
data are then placed in the short-term storage and the user is notified and provided 
information needed to retrieve the data. 

5. The user then retrieves the processed data from the short-term archive. 
 

CONCEPTUAL ARCHITECTURE 

In order to look at the conceptual architecture, it is helpful to first examine how Virtual 
Data Products fit into the overall concept of an Intelligent Archive.  Figure 1 shows the an 
adapted view of the Intelligent Archive concept envisioned by Ramapriyan et al1.  Virtual 
data products are primarily a means of accomplishing the functions of Data Management 
and Data Persistence/Preservation Management.  In doing so, they clearly need also to 
task the processing systems of Distributed Intelligent Systems.  However, one area where 
virtual data products may be particularly useful is within Intelligent Sensors.  Depending 
on the relative cost (and for spaceborne systems, radiation hardening) of computing 
elements vs. storage elements, virtual data products may be used to constitute a virtual 
archive on the sensor itself:  the sensor might store just compressed, raw data in fairly 
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limited space, responding to requests for data products with on-the-fly productions of 
them. 
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Figure 1. Virtual Data Products may be components of an Intelligent 

Archive’s Data Management and Data Persistence/Preservation 
Management; they likely make use of the Processing Systems; and they 
may also provide a means to implement a virtual archive within 
Intelligent Sensors. 

Figure 2 shows a possible architectural concept for the component responsible for Virtual 
Data Products.  Three main aspects of the operation need to be considered to 
accommodate the scenarios discussed above.   
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Figure 2 Conceptual Architecture for Processing Virtual Data 

DATA PREPARATION AND STAGING 

• Ingest: Although not part of the intelligent archive, the data receive and ingest 
functions are shown to illustrate the source of the data and its path into the 
intelligent archive 

• Data Preparation:  The most important aspect of this function is the Quality Check 
Calculations discussed earlier.  This function is performed on incoming data using 
the available algorithms in the algorithm archive.  Additionally, any cataloging and 
database preparation could be done here as well before committing these data to 
the Level 0 Archive. 

• Staging:  Initially, the intelligent archive should “stage” newly receive data to 
quick-access mass storage, or Cache Server, for some period to allow immediate 
access after initial acquisition without waiting for long-term storage retrieval.  The 
amount of time to hold in mass storage could be based on typical lag time 
between collection and request. 

 

DATA REQUEST/BROKERING/PROCESSING 

REQUEST BROKERING   

The potential complexities of available products, algorithms / versions, ancillary data, 
etc. are likely to require a component of the system that can present options and 
accept requests. 

• The Request Broker allows users to interact with the intelligent archive.  It is 
here, where users would see lists of available data, algorithms, and (depending 
on the quality check option used) thumbnail views of Level 1 and/or Level 2 
data.   

• When the user is satisfied with the request, the Request Broker accepts the 
users’ request. 
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• The Request Broker then searches the Cache Server for available data.  If it is 
not available, the Request Broker will pull the required data from the Level 0 
Archive and appropriate algorithms from the Algorithm Archive.  This bundled 
data/algorithm package is then passed to the Compute Broker for the 
computation of the required variables. 

REQUEST PROCESSING AND ASSEMBLY   

• The Compute Broker receives the bundled data/algorithm package from the 
Request Broker.  Based on the user’s priority, it may pass the bundle to a Local 
Compute Server (for immediate processing) or farm it out to Remote 
Computing Resources (for delayed processing as resources are available).   

• The Local Compute Server might be a local high performance computing 
system or a local grid system.  Remote Computing Resources could be a 
widely dispersed grid computing system.  In either case, it is possible that the 
processing job could be shared between multiple computers by dividing the 
data/algorithm bundle into segments. 

• Upon completion of all processing, the Compute Broker will re-assemble the 
processed data (if needed) and store it on the Cache Server.  The Compute 
Broker will then notify the Request Broker of the completed request and the 
location of the processed data. 

• Request Delivery:  When notified by the Compute Broker of a successful 
completion of required computing, the Request Broker will then notify the 
user that the data retrieval is complete, and provide appropriate information 
for the user to retrieve the data from the Cache Server. 

 

ALGORITHM DEVELOPMENT/ACCEPTANCE  

Although this function is not strictly part of the intelligent archive, it certainly impacts the 
intelligent archive and its operation. 

• The user community would submit algorithms with a sample data set and the 
resulting product, perhaps with the results of a standard test (designed by the 
committee) included.   

• Members of the committee might include representatives from the user 
community, science team members, and the intelligent archive.   

• Once an algorithm is accepted, it is entered into the Algorithm Archive.  A 
processing campaign would then be initiated to execute the Quality Check 
Calculation for the new algorithms.  Older algorithms (and associated quality 
check data) may be purged or retained depending on the confidence in the overall 
quality of the new algorithms.   

• Data provided by one of these algorithms will also have an electronic signature or 
“seal of approval” to indicate that these are the best available data for studies.  
This signature will be needed to confirm and track the data “parentage.”  
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CONCLUSION 

The replacement of stored products, processed routinely, by virtual products processed on 
demand presents a number of challenges.  Aside from the basic mechanics of 
implementing an on-demand processing system, issues of computing power, latency, 
quality assurance, and long-term migration to new technologies must all be addressed.  
However, all of these issues also have potential solutions that appear at least feasible 
within the next decade, given expected improvements in computing technology.  In 
return, product virtualization would reduce storage, and more importantly data migration, 
requirements and provide user benefits in algorithm consistency and selection, as well as 
more precise data selection.  If we neglect these latter benefits, perhaps the key factor on 
how much to invest in product virtualization is the relative growth in storage vs. 
computing technology.  If computing technology leaves storage technology behind in the 
coming years, product virtualization will be easier to accomplish, and will likely become 
more necessary as data growth is likely to keep up with computing growth1.  On the other 
hand, if storage technology comes out ahead, the driver for virtual products is lessened.  
Even if overall trends follow the latter case, it may still be important to examine specific 
environments, such as spaceborne data systems perhaps, where computing may be easier 
to deploy than storage. 
                                         
1  Ramapriyan, H. K., G. McConaughy, C. Lynnes, S. Kempler, K. McDonald, R. Harberts, L. Roelofs, 
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